Ph.D. Dissertation Defense - Shih-Chun Lin

TitleSoftAir: Software-defined Networking and Network Function Virtualization Solutions for 5G Cellular Systems


Dr. Ian Akyildiz, ECE, Chair , Advisor

Dr. Chuanyi Ji, ECE

Dr. Geoffrey Li, ECE

Dr. Ragupathy Sivakumar, ECE

Dr. Pu Wang, ECE Wichita State


One of the main building blocks and major challenges for 5G cellular systems is the design of flexible network architectures, which can be realized by the paradigm of software-defined networking (SDN) and network function virtualization (NFV). Existing commercial cellular systems rely on closed and inflexible hardware-based architectures both at the radio frontend and in the core network. These problems significantly delay the adoption and deployment of new standards, impose significant challenges in implementing new techniques to maximize the network capacity and coverage, and prevent provisioning of truly-differentiated services for growing, highly variable traffic patterns. The objective of this thesis is to introduce an innovative software-defined architecture for 5G cellular systems, called SoftAir. Through the synergy of SDN and NFV, SoftAir enables the next-generation cellular networks with the needed flexibility for evolving and adapting to the ever-changing network context. In this presentation, first, a research overview of priori architecture solutions and the SoftAir architecture will been given. Next, two essential management tools built upon SoftAir will be presented, i.e., in-band control traffic management and network virtualization with throughput-optimal hypervisors for bursty data traffic. Finally, a novel software-defined traffic engineering for SoftAir will be introduced, i.e., dynamic remote radio head clustering for solving NLOS problem in 5G millimeter-wave communication. The developed SoftAir in this thesis is anticipated to lay out the foundation for 5G wireless software-defined cellular systems.

Event Details


  • Monday, April 3, 2017
    1:30 pm - 3:30 pm
Location: Room 5126, Centergy